Overexpression of USF Increases TGF-β1 Protein Levels, But G1 Phase Arrest was not Induced in FRTL-5 Cells

نویسندگان

  • Keun-Sook Kim
  • Hye Seung Jung
  • Yun Jae Chung
  • Tae Sik Jung
  • Hye Won Jang
  • Myung-Shik Lee
  • Kwang-Won Kim
  • Jae Hoon Chung
چکیده

Transforming growth factor-beta1 (TGF-beta1) is a potent inhibitor of cellular growth and proliferation by G1 phase arrest or apoptosis. We investigated the association of TGF-beta1 with the anti-proliferative effect of upstream stimulatory factor (USF) in Fischer rat thyroid cell line (FRTL-5) cells. [methyl-(3)H] thymidine uptake was measured after treatment of FRTL-5 cells with TGF-beta1 to identify its anti-proliferative effect. USF-1 and USF-2 proteins were in vitro translated, and an electrophoretic mobility shift assay was performed to identify the interaction between USF and the TGF-beta1 promoter. FRTL-5 cells were transfected with USF cDNA, and then the expression of TGF-beta1 was examined with Northern and Western blotting. The cell cycle-regulating proteins associated with TGF-beta1 were also measured. TGF-beta1 significantly inhibited [methyl-(3)H] thymidine uptake in FRTL-5 cells. Two specific binding sites for USF were found in the TGF-beta1 promoter: -1,846 approximately -1,841 (CACATG) and -621 approximately -616 (CATGTG). Overexpression of USF increased both the mRNA levels and protein levels of TGF-beta1. However, the expression of cyclin D1, CDK4, cyclin E, and CDK2, and the phosphorylation of retinoblastoma protein remained unchanged. Overexpression of USF in FRTL-5 cells increased the expression of TGF-beta10 through specific binding to TGF-beta1 promoter. However, the USF-induced expression of TGF-beta1 did not cause G1 arrest.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

USF inhibits cell proliferation through delay in G2/M phase in FRTL-5 cells.

Upstream stimulatory factor (USF) has a negative effect on the cell proliferation in some cell types. However, its effect on thyrocytes is not clear. Therefore, we investigated the effects of USF on the proliferation and function of thyroid follicular cells. Complementary DNAs of the USF-1 and USF-2 were synthesized using RT-PCR from FRTL-5 cells, and each was transfected to FRTL-5 cells and pa...

متن کامل

Effect of radiation and repeated sub-culturing on the transforming growth factor-β1 signaling pathway in FRTL-5 cells.

BACKGROUND/AIM Fisher rat thyroid cells (FRTL-5) display increased proliferation, reduced follicularization and decreased thyroxin release with repeated sub-culturing. These changes occur earlier and more rapidly following exposure to ionizing radiation. We hypothesized that altered transforming growth factor-β1 (TGF-β1) signaling contributes to these differences. MATERIALS AND METHODS Assess...

متن کامل

Beneficial effects of N-acetylcysteine on protease-antiprotease balance in attenuating bleomycin-induced pulmonary fibrosis in rats

Objective(s): The role of N-acetylcysteine (NAC) as an anti-oxidant in attenuating bleomycin-induced pulmonary fibrosis has been reported. However, its effect on parenchymal remodeling via regulating the protease-antiprotease balance is not fully defined. Therefore, the present study was designed to explore the possible role of matrix metalloproteinases (MMP), tissue i...

متن کامل

Overexpression of transforming growth factor type III receptor restores TGF-β1 sensitivity in human tongue squamous cell carcinoma cells

The transforming growth factor type III receptor (TβRIII), also known as β-glycan, is a multi-functional sensor that regulates growth, migration and apoptosis in most cancer cells. We hereby investigated the expression of TβRIII in clinical specimens of tongue squamous cell carcinoma (TSCC) and the underlying mechanism that TβRIII inhibits the growth of CAL-27 human oral squamous cells. The TSC...

متن کامل

4-O-Methylhonokiol Protects HaCaT Cells from TGF-β1-Induced Cell Cycle Arrest by Regulating Canonical and Non-Canonical Pathways of TGF-β Signaling

4-O-methylhonokiol, a neolignan compound from Magnolia Officinalis, has been reported to have various biological activities including hair growth promoting effect. However, although transforming growth factor-β (TGF-β) signal pathway has an essential role in the regression induction of hair growth, the effect of 4-O-methylhonokiol on the TGF-β signal pathway has not yet been elucidated. We thus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2008